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fADE model

The space-fractional advection-dispersion equation (fADE):

∂C
∂t

= −v
∂C
∂x

+ D
1 + β

2
∂αC
∂xα

+ D
1− β

2
∂αC

∂(−x)α
, (1)

C(x , t) is tracer concentration

v (L/T) is the average plume velocity

D (Lα/T) controls rate of spreading

β (dimensionless) is the skewness parameter.

the space-fractional index α (dimensionless) codes the
heterogeneity of the porous medium

When α = 2, (1) reduces to the classical ADE with constant
parameters.
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Particle tracking approach

A tracer plume is represented by a large ensemble of
statistically identical particles [X (k)

t : 1 ≤ k ≤ n].

Each particle has the same probability density fθ(x , t).

We assume a fixed total mass K > 0, so that each particle
carries mass K/n.

The model concentration C(x , t) = Kfθ(x , t).

For the fADE with point source initial condition, fθ(x , t) is a
stable density.
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Histogram of a large ensemble of particles

f̂θ(x , t) =
1
n

n∑
k=1

I(x −∆ < X (k)
t ≤ x)

Suppressing t and θ,

E [f̂ (x)] =
p∆(x)

∆

Var
[
f̂ (x)

]
=

1
n∆2 p∆(x)

(
1− p∆(x)

)
Cov

[
f̂ (x), f̂ (y)

]
= − 1

n∆2 p∆(x)p∆(y)

p∆(x) = F (x)− F (x −∆)
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It can be shown that

√
n∆

(
f̂ (x)− f (x)

f̂ (y)− f (y)

)
→ N

(
0,
(

f (x) 0
0 f (y)

))
.

Observed concentration,Ĉ(x , t), can be regarded as a
scaled histogram bar,

Ĉ(x , t) =
K
∆
· Nx

n
= K f̂ (x , t)

Nx is the number of particles in the bin at location x , and ∆
is the bin width.

C. Y. Lim Parameter Estimation for Fractional Transport



It can be shown that

√
n∆

(
f̂ (x)− f (x)

f̂ (y)− f (y)

)
→ N

(
0,
(

f (x) 0
0 f (y)

))
.
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What we observe

We don’t observe each particle X (k)
t but observe concentration

Ĉ(xi , t), a scaled histogram bar K f̂ (x , t).

Spatial snapshots: {xi , ci} for i = 1, · · · ,N.
xi locations, ci = Ĉ(xi , t) observed concentration at
location xi for fixed time t .

Temporal breakthrough curves: {ti , ci} for i = 1, · · · ,N.
ti times, ci = Ĉ(x , ti) observed concentration at time ti for
fixed location x .
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Parameter estimation

Since variation of f̂ (x , t) is proportional to f (x , t), consider
weighted least squares.

For spatial snapshots, minimize

e(θ,K ) =
1
N

N∑
i=1

1
Kci

(
ci − Kfθ(xi , t)

)2

Iterative two-step approach
Given K minimize θ using e(θ,K ).
Given θ,

K =

√√√√ ∑n
i=1 ci∑n

i=1[f 2
θ

(xi , t)/ci ]

Similar approach for temporal breakthrough curves
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Stable density fθ(x , t)

Recall fθ(x , t) for fADE is a stable density
No closed form
It can be characterized by Fourier transform:∫

eikx fθ(x , t) dx = exp (iµk − σαωα,β(k)) , (2)

where

ωα,β(k) =

 |k |
α[1 + iβsign(k) tan(πα/2)] for α 6= 1,

|k |[1 + iβ(2/π)sign(k) log |k |] for α = 1

0 < α ≤ 2 is the tail index
−1 ≤ β ≤ 1 controls skewness
−∞ < µ <∞ controls center
σ ≥ 0 controls scale.
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Asymptotics of estimated parameters

It can be shown that the estimated parameters are
asymptotically normal.

(θ̂ − θ0) ≈ 1√
n dxn

AN (0, I) where

A =

[
∂fθ0

(x, t)

∂θ

T

diag
[
fθ0

(x, t)
]−1 ∂fθ0

(x, t)

∂θ

]−1

×
∂fθ0

(x, t)

∂θ

T [
diag(fθ0

(x))
]−1/2

The matrix A can be evaluated numerically.
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Stable parameters v.s. fADE parameters

θ = (α, β, µ, σ)

The plume center of mass µ = vt

The scale σ is given by σα = Dt | cos(πα/2)|.

Computing stable density
Analytical inversion of the Fourier transform and numerical
integration of the resulting formula

Programs are widely available [e.g. see Nolan, 1999]
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Spatial snapshots from a MADE tracer test

Natural-gradient tracer tests at the MAcroDispersion
Experimental (MADE) site at Columbus Air Force Base in
northeastern Missisipi.

The MADE-2 tritium plume data was considered [Boggs et
al., 1993]

The data represent the maximum concentration measured
in vertical slices perpendicular to the direction of plume
travel

Four spatial snapshots at day 27, day 132, day 224, and
day 328 days after injection
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Figure: Day 224, α = 1.0915, β = 0.99, v = 0.196 m/day , D = 0.186
mα/day , and K = 56,778 mg/L
95% CI for α: [1.08,1.11], 95% CI for v : [0.15,0.23]
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Breakthrough curve for the Red Cedar river

From a tracer test reported in Phanikumar et al. [2007]

A fourth-order stream in south central Michigan, United
States

Four slug additions of Flourescein dye were released in the
middle 75% of the channel

The distances to the three sampling locations from the
point of release: 1.4 km, 3.1 km and 5.08 km from the
injection site
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1.4 km: α = 1.32, β = −0.99,
v = 0.022 km/min,
D = 0.00181 kmα/min, and
K = 22.64 µg/L.

3.1 km: α = 1.56, β = −0.99,
v = 0.026 km/min,
D = 0.00131 kmα/min, and
K = 25.48 µg/L.

5.08 km: α = 1.58, β = −0.96,
v = 0.029 km/min,
D = 0.00181 kmα/min,
K = 27.75 µg/L.
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Breakthrough curve for the Grand river

From a tracer test reported in Shen et al. [2008]

Test on a 40 km stretch of the Grand River, a 420km long
tributary to Lake Michigan, traveling through the city of
Grand Rapids and extending to Coopersville, Michigan,
United States

Rodamine WT 20% (weight) solution was used in the study.

The distances to the four sampling locations from the point
of release: 4558 m (Bridge 1), 13,687 m (Bridge 2), 28,375
m (Bridge 3) and 37,608 m (Bridge 4).
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Figure: Bridge 3: α = 1.38, β = −1.0, v = 0.446 m/sec, D = 0.887
mα/sec, and K = 50,179 ppb
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Interactive Ground Water simulation (IGW)

Provide unified deterministic, stochastic, and multi-scale
groundwater modeling [Li and Liu, 2006; Li et al., 2006]

Fit fADE (1) to an ensemble average plume simulated in
IGW using a multiscale hydraulic conductivity field on a
model domain of 500 m × 125 m.

An ensemble mean of 100 simulated plumes was averaged
along the axis transverse to the flow to produce one
dimensional concentration.
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α = 1.25,
β = −1.0,
µ = 93.4,
σ = 31.8,
K = 2578
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Conclusion

Parameter estimation based on a particle tracking
approach, where concentration measurements are
interpreted as a random histogram.

Can also be used for any other transport model that admits
a particle tracking solution.

The particle tracking model implies that concentration
variance is proportional to concentration.

The method is effective for both spatial snapshots and
temporal breakthrough data.
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Thank You!
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